MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience
Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience
Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience
Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience
Journal Article

Adoption of Deep-Learning Models for Managing Threat in API Calls with Transparency Obligation Practice for Overall Resilience

2024
Request Book From Autostore and Choose the Collection Method
Overview
System-to-system communication via Application Programming Interfaces (APIs) plays a pivotal role in the seamless interaction among software applications and systems for efficient and automated service delivery. APIs facilitate the exchange of data and functionalities across diverse platforms, enhancing operational efficiency and user experience. However, this also introduces potential vulnerabilities that attackers can exploit to compromise system security, highlighting the importance of identifying and mitigating associated security risks. By examining the weaknesses inherent in these APIs using security open-intelligence catalogues like CWE and CAPEC and implementing controls from NIST SP 800-53, organizations can significantly enhance their security posture, safeguarding their data and systems against potential threats. However, this task is challenging due to evolving threats and vulnerabilities. Additionally, it is challenging to analyse threats given the large volume of traffic generated from API calls. This work contributes to tackling this challenge and makes a novel contribution to managing threats within system-to-system communication through API calls. It introduces an integrated architecture that combines deep-learning models, i.e., ANN and MLP, for effective threat detection from large API call datasets. The identified threats are analysed to determine suitable mitigations for improving overall resilience. Furthermore, this work introduces transparency obligation practices for the entire AI life cycle, from dataset preprocessing to model performance evaluation, including data and methodological transparency and SHapley Additive exPlanations (SHAP) analysis, so that AI models are understandable by all user groups. The proposed methodology was validated through an experiment using the Windows PE Malware API dataset, achieving an average detection accuracy of 88%. The outcomes from the experiments are summarized to provide a list of key features, such as FindResourceExA and NtClose, which are linked with potential weaknesses and related threats, in order to identify accurate control actions to manage the threats.

MBRLCatalogueRelatedBooks