MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The Chitranjan S. Ranawat Award
The Chitranjan S. Ranawat Award
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The Chitranjan S. Ranawat Award
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Chitranjan S. Ranawat Award
The Chitranjan S. Ranawat Award

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Chitranjan S. Ranawat Award
The Chitranjan S. Ranawat Award
Journal Article

The Chitranjan S. Ranawat Award

2017
Request Book From Autostore and Choose the Collection Method
Overview
Background Neutral mechanical alignment (MA) in total knee arthroplasty (TKA) aims to position femoral and tibial components perpendicular to the mechanical axis of the limb. In contrast, kinematic alignment (KA) attempts to match implant position to the prearthritic anatomy of the individual patient with the aim of improving functional outcome. However, comparative data between the two techniques are lacking. Questions/purposes In this randomized trial, we asked: (1) Are 2-year patient-reported outcome scores enhanced in patients with KA compared with an MA technique? (2) How does postoperative component alignment differ between the techniques? (3) Is the proportion of patients undergoing reoperation at 2 years different between the techniques? Methods Ninety-nine primary TKAs in 95 patients were randomized to either MA (n = 50) or KA (n = 49) groups. A pilot study of 20 TKAs was performed before this trial using the same patient-specific guides positioning in kinematic alignment. In the KA group, patient-specific cutting blocks were manufactured using individual preoperative MRI data. In the MA group, computer navigation was used to ensure neutral mechanical alignment accuracy. Postoperative alignment was assessed with CT scan, and functional scores (including the Oxford Knee Score, WOMAC, and the Forgotten Joint Score) were assessed preoperatively and at 6 weeks, 6 months, and 1 and 2 years postoperatively. No patients were lost to followup. We set sample size at a minimum of 45 patients per treatment arm based on a 5-point improvement in the mean Oxford Knee Score (OKS; the previously reported minimum clinically significant difference for the OKS in TKA), a pooled SD of 8.3, 80% power, and a two-sided significance level of 5%. Results We observed no difference in 2-year change scores (postoperative minus preoperative score) in KA versus MA patients for the OKS (mean 21, SD 8 versus 20, SD 8, least square means 1.0, 95% confidence interval [CI], −1.4 to 3.4, p = 0.4), WOMAC score (mean 38, SD 18 versus 35, SD 8, least square means 3, 95% CI, −3.2 to 8.9, p = 0.3), or Forgotten Joint score (28 SD 37 versus 28, SD 28, least square means 0.8, 95% CI, −9.1–10.7, p = 0.8). Postoperative hip-knee-ankle axis was not different between groups (mean KA 0.4° varus SD 3.5 versus MA 0.7° varus SD 2.0), but in the KA group, the tibial component was a mean 1.9° more varus than the MA group (95% CI, 0.8°−3.0°, p = 0.003) and the femoral component in 1.6° more valgus (95% CI, −2.5° to −0.7°, p = 0.003). Complication rates were not different between groups. Conclusions We found no difference in 2-year patient-reported outcome scores in TKAs implanted using the KA versus an MA technique. The theoretical advantages of improved pain and function that form the basis of the design rationale of KA were not observed in this study. Currently, it is unknown whether the alterations in component alignment seen with KA will compromise long-term survivorship of TKA. In this study, we were unable to demonstrate an advantage to KA in terms of pain or function that would justify this risk. Level of Evidence Level I, therapeutic study.