MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation
Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation
Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation
Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation
Journal Article

Room temperature deposition of freestanding BaTiO3 films: temperature-induced irreversible structural and chemical relaxation

2022
Request Book From Autostore and Choose the Collection Method
Overview
The room temperature aerosol deposition method is especially promising for the rapid deposition of ceramic thick films, making it interesting for functional components in energy, mobility, and telecommunications applications. Despite this, a number of challenges remain, such as an enhanced electrical conductivity and internal residual stresses in as-deposited films. In this work, a novel technique that integrates a sacrificial water-soluble buffer layer was used to fabricate freestanding ceramic thick films, which allows for direct observation of the film without influence of the substrate or prior thermal treatment. Here, the temperature-dependent chemical and structural relaxation phenomena in freestanding BaTiO3 films were directly investigated by characterizing the thermal expansion properties and temperature-dependent crystal structure as a function of oxygen partial pressure, where a clear nonlinear, hysteretic contraction was observed during heating, which is understood to be influenced by lattice defects. As such, aliovalent doping and atmosphere-dependent annealing experiments were used to demonstrate the influence of local chemical redistribution and oxygen vacancies on the thermal expansion, leading to insight into the origin of the high room temperature conductivity of as-deposited films as well as greater insight into the influence of the induced chemical, structural, and microstructural changes in room temperature deposited functional ceramic thick films.

MBRLCatalogueRelatedBooks