MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optical current generation in graphene: CEP control vs. ω + 2ω control
Optical current generation in graphene: CEP control vs. ω + 2ω control
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optical current generation in graphene: CEP control vs. ω + 2ω control
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optical current generation in graphene: CEP control vs. ω + 2ω control
Optical current generation in graphene: CEP control vs. ω + 2ω control

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optical current generation in graphene: CEP control vs. ω + 2ω control
Optical current generation in graphene: CEP control vs. ω + 2ω control
Journal Article

Optical current generation in graphene: CEP control vs. ω + 2ω control

2021
Request Book From Autostore and Choose the Collection Method
Overview
The injection of directional currents in solids with strong optical fields has attracted tremendous attention as a route to realize ultrafast electronics based on the quantum-mechanical nature of electrons at femto- to attosecond timescales. Such currents are usually the result of an asymmetric population distribution imprinted by the temporal symmetry of the driving field. Here we compare two experimental schemes that allow control over the amplitude and direction of light-field-driven currents excited in graphene. Both schemes rely on shaping the incident laser field with one parameter only: either the carrier-envelope phase (CEP) of a single laser pulse or the relative phase between pulses oscillating at angular frequencies and 2 , both for comparable laser parameters. We observe that the efficiency in generating a current via two-color-control exceeds that of CEP control by more than two orders of magnitude (7 nA vs. 18 pA), as the + 2 field exhibits significantly more asymmetry in its temporal shape. We support this finding with numerical simulations that clearly show that two-color current control in graphene is superior, even down to single-cycle pulse durations. We expect our results to be relevant to experimentally access fundamental properties of any solid at ultrafast timescales, as well as for the emerging field of petahertz electronics.