MbrlCatalogueTitleDetail

Do you wish to reserve the book?
High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold
High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold
High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold
High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold
Journal Article

High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold

2024
Request Book From Autostore and Choose the Collection Method
Overview
Grayscale image processing is a key research area in the field of computer vision and image analysis, where image quality and visualization effects may be seriously damaged by high-density salt and pepper noise. A traditional median filter for noise removal may result in poor detail reservation performance under strong noise and the judgment performance of different noise characteristics has strong dependence and rather weak robustness. In order to reduce the effects of high-density salt and pepper noise on image quality when processing high-noise grayscale images, an improved two-dimensional maximum Shannon entropy median filter (TSETMF) is proposed for the adaptive selection of a threshold to enhance the filter performance while stably and effectively retaining the details of the images. The framework of the proposed improved TSETMF algorithm is designed in detail. The noise in images is filtered by means of automatically partitioning a window size, the threshold value of which is adaptively calculated using two-dimensional maximum Shannon entropy. The theoretical model is verified and analyzed through comparative experiments using three kinds of classical grayscale images. The experimental results demonstrate that the proposed improved TSETMF algorithm exhibits better processing performance than that of the traditional filter, with a higher suppression of high-density noise and denoising stability. This stronger ability while processing high-density noise is demonstrated by a higher peak signal-to-noise ratio (PSNR) of 24.97 dB with a 95% noise density located in the classical Lena grayscale image. The better denoising stability, with a noise density from 5% to 95%, is demonstrated by the minor decline in the PSNR of approximately 10.78% relative to a PSNR of 23.10 dB located in the classical Cameraman grayscale image. Furthermore, it can be advanced to promote higher noise filtering and stability for processing high-density salt and pepper noise in grayscale images.