MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing
Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing
Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing
Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing
Journal Article

Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing

2020
Request Book From Autostore and Choose the Collection Method
Overview
Model-to-model (M2M) transformations are among the key components of model-driven development, enabling a certain level of automation in the process of developing models. The developed solution of using drag-and-drop actions-based M2M transformations contributes to this purpose by providing a flexible, reusable, customizable, and relatively easy-to-use transformation method and tool support. The solution uses model-based transformation specifications triggered by user-initiated drag-and-drop actions within the model deployed in a computer-aided software engineering (CASE) tool environment. The transformations are called partial M2M transformations, meaning that a specific user-defined fragment of the source model is being transformed into a specific fragment of the target model and not running the whole model-level transformation. In this paper, in particular, we present the main aspects of the developed extension to that M2M transformation method, delivering a set of natural language processing (NLP) techniques on both the conceptual and implementation level. The paper addresses relevant developments and topics in the field of natural language processing and presents a set of operators that can be used to satisfy the needs of advanced textual preprocessing in the scope of M2M transformations. Also in this paper, we describe the extensions to the previous M2M transformation metamodel necessary for enabling the solution’s NLP-related capabilities. The usability and actual benefits of the proposed extension are introduced by presenting a set of specific partial M2M transformation use cases where natural language processing provides actual solutions to previously unsolvable situations when using the previous M2M transformation development.