MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits
Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits
Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits
Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits
Journal Article

Bi-Directional Mutual Energy Trade between Smart Grid and Energy Districts Using Renewable Energy Credits

2021
Request Book From Autostore and Choose the Collection Method
Overview
A central authority, in a conventional centralized energy trading market, superintends energy and financial transactions. The central authority manages and controls transparent energy trading between producer and consumer, imposes a penalty in case of contract violation, and disburses numerous rewards. However, the management and control through the third party pose a significant threat to the security and privacy of consumers’/producers’ (participants) profiles. The energy transactions between participants involving central authority utilize users’ time, money, and impose a computational burden over the central controlling authority. The Blockchain-based decentralized energy transaction concept, bypassing the central authority, is proposed in Smart Grid (SG) by researchers. Blockchain technology braces the concept of Peer-to-Peer (P2P) energy transactions. This work encompasses the SolarCoin-based digital currency blockchain model for SG incorporating RE. Energy transactions from Prosumer (P) to Prosumer, Energy District to Energy District, and Energy District to SG are thoroughly investigated and analyzed in this work. A robust demand-side optimized model is proposed using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to maximize Prosumer Energy Surplus (PES), Grid revenue (GR), percentage energy transactions accomplished, and decreased Prosumer Energy Cost (PEC). Real-time averaged energy data of Australia are employed, and a piece-wise energy price mechanism is implemented in this work. The graphical analysis and tabular statistics manifest the efficacy of the proposed model.