Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Cystinuria: genetic aspects, mouse models, and a new approach to therapy
by
Tischfield, Jay A
, Hu, Longqin
, Sahota, Amrik
, Goldfarb, David S
, Ward, Michael D
in
Females
/ Gender differences
/ Genetic disorders
/ Laboratory animals
/ Rodents
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cystinuria: genetic aspects, mouse models, and a new approach to therapy
by
Tischfield, Jay A
, Hu, Longqin
, Sahota, Amrik
, Goldfarb, David S
, Ward, Michael D
in
Females
/ Gender differences
/ Genetic disorders
/ Laboratory animals
/ Rodents
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cystinuria: genetic aspects, mouse models, and a new approach to therapy
Journal Article
Cystinuria: genetic aspects, mouse models, and a new approach to therapy
2019
Request Book From Autostore
and Choose the Collection Method
Overview
Cystinuria, a genetic disorder of cystine transport, is characterized by excessive excretion of cystine in the urine and recurrent cystine stones in the kidneys and, to a lesser extent, in the bladder. Males generally are more severely affected than females. The disorder may lead to chronic kidney disease in many patients. The cystine transporter (b0,+) is a heterodimer consisting of the rBAT (encoded by SLC3A1) and b0,+AT (encoded by SLC7A9) subunits joined by a disulfide bridge. The molecular basis of cystinuria is known in great detail, and this information is now being used to define genotype–phenotype correlations. Current treatments for cystinuria include increased fluid intake to increase cystine solubility and the administration of thiol drugs for more severe cases. These drugs, however, have poor patient compliance due to adverse effects. Thus, there is a need to reduce or eliminate the risks associated with therapy for cystinuria. Four mouse models for cystinuria have been described and these models provide a resource for evaluating the safety and efficacy of new therapies for cystinuria. We are evaluating a new approach for the treatment of cystine stones based on the inhibition of cystine crystal growth by cystine analogs. Our ongoing studies indicate that cystine diamides are effective in preventing cystine stone formation in the Slc3a1 knockout mouse model for cystinuria. In addition to crystal growth, crystal aggregation is required for stone formation. Male and female mice with cystinuria have comparable levels of crystalluria, but very few female mice form stones. The identification of factors that inhibit cystine crystal aggregation in female mice may provide insight into the gender difference in disease severity in patients with cystinuria.
Publisher
Springer Nature B.V
Subject
This website uses cookies to ensure you get the best experience on our website.