MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER
Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER
Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER
Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER
Journal Article

Research on a General SER Rate Prediction Model Based on a Set of Configuration Parameters Related to SER

2025
Request Book From Autostore and Choose the Collection Method
Overview
This article comprehensively analyzes the new developments and challenges faced by several typical prediction models in the field of radiation effects in recent years. The models discussed include the RPP model, the extended RPP (rectangular parallelepiped) model, and the IRPP (integral rectangular parallelepiped) model. The article conducts a comprehensive analysis of the limitations of the assumption that uses the linear energy transfer (LET) of incident particles and the SEU (single-particle upset) cross-section (without considering the energy and type of ions) to predict the rate of single-particle effects (SEUs). Additionally, the article points out that with the continuous progress of integrated circuit technology, the geometric shape of the target circuit, the energy of the incident particles, the type of particles, and more precise physical models corresponding to the interaction between radiation and matter have become increasingly important in evaluating the sensitivity to single-particle effects (SEEs). Subsequently, based on the probability characteristics of SEE, a series of general estimation equations for the SEE rate are derived, considering particle energy, particle type, and the probability of influence at a specific moment. Then, by introducing the concept of interaction volume, the concept of sensitive volume is further expanded, and using these general equations, the relationship between the SEE rate cross-section and the SEE projected area is derived, simplifying the SEU rate prediction equation to a form that can be directly used in engineering applications. Finally, the article emphasizes a complete method of applying the general prediction equation to engineering to estimate the radiation disturbance performance of two typical verification circuits, and provides the corresponding prediction results.