MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change
Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change
Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change
Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change
Journal Article

Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change

2023
Request Book From Autostore and Choose the Collection Method
Overview
Southwest China (SWC) holds the distinction of being the world’s largest rock desertification area. Nevertheless, the impacts of climate change and ecological restoration projects on the carbon sinks in the karst area of Southwest China have not been systematically evaluated. In this study, we calculated carbon sinks by utilizing the Carnegie–Ames–Stanford Approach (CASA) model, and the actual measurements, including the net primary productivity (NPP) data and soil respiration (Rs,) were calculated to obtain carbon sink data. Our findings suggest that the carbon sinks in the karst areas are displaying increasing trends or positive reversals, accounting for 58.47% of the area, which is larger than the overall average of 45.08% for Southwest China. This suggests that the karst areas have a greater carbon sequestration potential. However, approximately 10.42% of carbon sinks experience negative reversals. The regions with increasing and positive reversals are primarily located in the western parts of Guizhou and Guangxi, while negative reversals are observed in the eastern parts of Chongqing, Guangxi, and Guizhou. Ecological restoration projects are the main driving factors for the carbon sinks with increasing trends. Increased humidity and ecological restoration management are the main reasons for the positive reversals of carbon sinks. However, warming and drought shift the carbon sinks from increasing to decreasing in Chongqing, east of Guangxi and Guizhou. The findings of this study highlight the significant role of ecological restoration projects and reexamine the impact of climate change on carbon sequestration.