Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Toward automatic motivator selection for autism behavior intervention therapy
in
Algorithms
/ Applications programs
/ Autism
/ Design factors
/ Effectiveness
/ Machine learning
/ Markov processes
/ Mobile computing
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Toward automatic motivator selection for autism behavior intervention therapy
in
Algorithms
/ Applications programs
/ Autism
/ Design factors
/ Effectiveness
/ Machine learning
/ Markov processes
/ Mobile computing
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Toward automatic motivator selection for autism behavior intervention therapy
Journal Article
Toward automatic motivator selection for autism behavior intervention therapy
2023
Request Book From Autostore
and Choose the Collection Method
Overview
Children with autism spectrum disorder (ASD) usually show little interest in academic activities and may display disruptive behavior when presented with assignments. Research indicates that incorporating motivational variables during interventions results in improvements in behavior and academic performance. However, the impact of such motivational variables varies between children. In this paper, we aim to address the problem of selecting the right motivator for children with ASD using reinforcement learning by adapting to the most influential factors impacting the effectiveness of the contingent motivator used. We model the task of selecting a motivator as a Markov decision process problem. The states, actions and rewards design consider the factors that impact the effectiveness of a motivator based on applied behavior analysis as well as learners’ individual preferences. We use a Q-learning algorithm to solve the modeled problem. Our proposed solution is then implemented as a mobile application developed for special education plans coordination. To evaluate the motivator selection feature, we conduct a study involving a group of teachers and therapists and assess how the added feature aids the participants in their decision-making process of selecting a motivator. Preliminary results indicated that the motivator selection feature improved the usability of the mobile app. Analysis of the algorithm performance showed promising results and indicated improvement of the recommendations over time.
Publisher
Springer Nature B.V
Subject
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.