MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Controlling and enhancing CRISPR systems
Controlling and enhancing CRISPR systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Controlling and enhancing CRISPR systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Controlling and enhancing CRISPR systems
Controlling and enhancing CRISPR systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Controlling and enhancing CRISPR systems
Controlling and enhancing CRISPR systems
Journal Article

Controlling and enhancing CRISPR systems

2021
Request Book From Autostore and Choose the Collection Method
Overview
Many bacterial and archaeal organisms use clustered regularly interspaced short palindromic repeats–CRISPR associated (CRISPR–Cas) systems to defend themselves from mobile genetic elements. These CRISPR–Cas systems are classified into six types based on their composition and mechanism. CRISPR–Cas enzymes are widely used for genome editing and offer immense therapeutic opportunity to treat genetic diseases. To realize their full potential, it is important to control the timing, duration, efficiency and specificity of CRISPR–Cas enzyme activities. In this Review we discuss the mechanisms of natural CRISPR–Cas regulatory biomolecules and engineering strategies that enhance or inhibit CRISPR–Cas immunity by altering enzyme function. We also discuss the potential applications of these CRISPR regulators and highlight unanswered questions about their evolution and purpose in nature. This Review summarizes recent advances in CRISPR–Cas regulation mechanisms by natural biomolecules that enhance or inhibit CRIPSR–Cas immunity, as well as their applications in CRISPR biology and technologies.