MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly
Journal Article

Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly

2023
Request Book From Autostore and Choose the Collection Method
Overview
Whole-genome synthesis provides a powerful approach for understanding and expanding organism function 1 – 3 . To build large genomes rapidly, scalably and in parallel, we need (1) methods for assembling megabases of DNA from shorter precursors and (2) strategies for rapidly and scalably replacing the genomic DNA of organisms with synthetic DNA. Here we develop bacterial artificial chromosome (BAC) stepwise insertion synthesis (BASIS)—a method for megabase-scale assembly of DNA in Escherichia coli episomes. We used BASIS to assemble 1.1 Mb of human DNA containing numerous exons, introns, repetitive sequences, G-quadruplexes, and long and short interspersed nuclear elements (LINEs and SINEs). BASIS provides a powerful platform for building synthetic genomes for diverse organisms. We also developed continuous genome synthesis (CGS)—a method for continuously replacing sequential 100 kb stretches of the E. coli genome with synthetic DNA; CGS minimizes crossovers 1 , 4 between the synthetic DNA and the genome such that the output for each 100 kb replacement provides, without sequencing, the input for the next 100 kb replacement. Using CGS, we synthesized a 0.5 Mb section of the E. coli genome—a key intermediate in its total synthesis 1 —from five episomes in 10  days. By parallelizing CGS and combining it with rapid oligonucleotide synthesis and episome assembly 5 , 6 , along with rapid methods for compiling a single genome from strains bearing distinct synthetic genome sections 1 , 7 , 8 , we anticipate that it will be possible to synthesize entire E. coli genomes from functional designs in less than 2 months. BAC stepwise insertion synthesis (BASIS) can be used to build synthetic genomes for diverse organisms, and continuous genome synthesis (CGS) enables the rapid synthesis of entire Escherichia coli genomes from functional designs.