MbrlCatalogueTitleDetail

Do you wish to reserve the book?
High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed
High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed
High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed
High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed
Journal Article

High‐throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed

2020
Request Book From Autostore and Choose the Collection Method
Overview
Summary Rapeseed is the second most important oil crop species and is widely cultivated worldwide. However, overcoming the ‘phenotyping bottleneck’ has remained a significant challenge. A clear goal of high‐throughput phenotyping is to bridge the gap between genomics and phenomics. In addition, it is important to explore the dynamic genetic architecture underlying rapeseed plant growth and its contribution to final yield. In this work, a high‐throughput phenotyping facility was used to dynamically screen a rapeseed intervarietal substitution line population during two growing seasons. We developed an automatic image analysis pipeline to quantify 43 dynamic traits across multiple developmental stages, with 12 time points. The time‐resolved i‐traits could be extracted to reflect shoot growth and predict the final yield of rapeseed. Broad phenotypic variation and high heritability were observed for these i‐traits across all developmental stages. A total of 337 and 599 QTLs were identified, with 33.5% and 36.1% consistent QTLs for each trait across all 12 time points in the two growing seasons, respectively. Moreover, the QTLs responsible for yield indicators colocalized with those of final yield, potentially providing a new mechanism of yield regulation. Our results indicate that high‐throughput phenotyping can provide novel insights into the dynamic genetic architecture of rapeseed growth and final yield, which would be useful for future genetic improvements in rapeseed.