MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Journal Article

Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)

2021
Request Book From Autostore and Choose the Collection Method
Overview
Deep learning has gained immense attention from researchers in medicine, especially in medical imaging. The main bottleneck is the unavailability of sufficiently large medical datasets required for the good performance of deep learning models. This paper proposes a new framework consisting of one variational autoencoder (VAE), two generative adversarial networks, and one auxiliary classifier to artificially generate realistic-looking skin lesion images and improve classification performance. We first train the encoder-decoder network to obtain the latent noise vector with the image manifold’s information and let the generative adversarial network sample the input from this informative noise vector in order to generate the skin lesion images. The use of informative noise allows the GAN to avoid mode collapse and creates faster convergence. To improve the diversity in the generated images, we use another GAN with an auxiliary classifier, which samples the noise vector from a heavy-tailed student t-distribution instead of a random noise Gaussian distribution. The proposed framework was named TED-GAN, with T from the t-distribution and ED from the encoder-decoder network which is part of the solution. The proposed framework could be used in a broad range of areas in medical imaging. We used it here to generate skin lesion images and have obtained an improved classification performance on the skin lesion classification task, rising from 66% average accuracy to 92.5%. The results show that TED-GAN has a better impact on the classification task because of its diverse range of generated images due to the use of a heavy-tailed t-distribution.