MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution
Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution
Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution
Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution
Journal Article

Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution

2024
Request Book From Autostore and Choose the Collection Method
Overview
Efforts to develop high-performance electrocatalysts for the hydrogen evolution reaction (HER) are of utmost importance in ensuring sustainable hydrogen production. The controllable fabrication of inexpensive, durable, and high-efficient HER catalysts still remains a great challenge. Herein, we introduce a universal strategy aiming to achieve rapid synthesis of highly active hydrogen evolution catalysts using a controllable hydrogen insertion method and solvothermal process. Hydrogen vanadium bronze HxV2O5 was obtained through controlling the ethanol reaction rate in the oxidization process of hydrogen peroxide. Subsequently, the intermetallic PtCoVO supported on two-dimensional graphitic carbon nitride (g-C3N4) nanosheets was prepared by a solvothermal method at the oil/water interface. In terms of HER performance, PtCoVO/g-C3N4 demonstrates superior characteristics compared to PtCo/g-C3N4 and PtCoV/g-C3N4. This superiority can be attributed to the notable influence of oxygen vacancies in HxV2O5 on the electrical properties of the catalyst. By adjusting the relative proportions of metal atoms in the PtCoVO/g-C3N4 nanomaterials, the PtCoVO/g-C3N4 nanocomposites show significant HER overpotential of η10 = 92 mV, a Tafel slope of 65.21 mV dec−1, and outstanding stability (a continuous test lasting 48 h). The nanoarchitecture of a g-C3N4-supported PtCoVO nanoalloy catalyst exhibits exceptional resistance to nanoparticle migration and corrosion, owing to the strong interaction between the metal nanoparticles and the g-C3N4 support. Pt, Co, and V simultaneous doping has been shown by Density Functional Theory (DFT) calculations to enhance the density of states (DOS) at the Fermi level. This augmentation leads to a higher charge density and a reduction in the adsorption energy of intermediates.