MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The Ramsey property implies no mad families
The Ramsey property implies no mad families
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The Ramsey property implies no mad families
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Ramsey property implies no mad families
The Ramsey property implies no mad families

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Ramsey property implies no mad families
The Ramsey property implies no mad families
Journal Article

The Ramsey property implies no mad families

2019
Request Book From Autostore and Choose the Collection Method
Overview
We show that if all collections of infinite subsets of ℕ have the Ramsey property, then there are no infinite maximal almost disjoint (mad) families. The implication is proved in Zermelo–Fraenkel set theory with only weak choice principles. This gives a positive solution to a long-standing problem that goes back to Mathias [A. R. D. Mathias, Ann. Math. Logic 12, 59–111 (1977)]. The proof exploits an idea which has its natural roots in ergodic theory, topological dynamics, and invariant descriptive set theory: We use that a certain function associated to a purported mad family is invariant under the equivalence relation E₀ and thus is constant on a “large” set. Furthermore, we announce a number of additional results about mad families relative to more complicated Borel ideals.
Publisher
National Academy of Sciences