MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites
A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites
A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites
A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites
Journal Article

A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites

2024
Request Book From Autostore and Choose the Collection Method
Overview
Binding site flexibility and dynamics strongly affect the ability of proteins to accommodate substrates and inhibitors. The significance of these properties is particularly pronounced for proteins that are inherently flexible, such as cytochrome P450 enzymes (CYPs). While the research on human CYPs provides detailed knowledge on both structural and functional level, such analyses are still lacking for their plant counterparts. This study aims to bridge this gap. We developed a novel computational pipeline consisting of two steps. Firstly, we use molecular dynamics (MD) simulations to capture the full conformational ensemble for a certain plant CYP. Subsequently, we developed and applied a comprehensive methodology to analyze a number of binding site properties—size, flexibility, shape, hydrophobicity, and accessibility—using the fpocket and mdpocket packages on MD-generated trajectories. The workflow was validated on human CYPs 1A2, 2A6, and 3A4, as their binding site characteristics are well known. Not only could we confirm known binding site properties, but we also identified and named previously unseen binding site channels for CYPs 1A2 and 2A6. The pipeline was then applied to plant CYPs, leading to the first categorization of 15 chosen plant CYPs based on their binding site’s (dis)similarities. This study provides a foundation for the largely uncharted fields of plant CYP substrate specificity and facilitates a more precise understanding of their largely unknown specific biological functions. It offers new insights into the structural and functional dynamics of plant CYPs, which may facilitate a more accurate understanding of the fate of agrochemicals or the biotechnological design and exploitation of enzymes with specific functions. Additionally, it serves as a reference for future structural–functional analyses of CYP enzymes across various biological kingdoms.