MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Morphodynamic Profiling of Protrusion Phenotypes
Morphodynamic Profiling of Protrusion Phenotypes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Morphodynamic Profiling of Protrusion Phenotypes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Morphodynamic Profiling of Protrusion Phenotypes
Morphodynamic Profiling of Protrusion Phenotypes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Morphodynamic Profiling of Protrusion Phenotypes
Morphodynamic Profiling of Protrusion Phenotypes
Journal Article

Morphodynamic Profiling of Protrusion Phenotypes

2006
Request Book From Autostore and Choose the Collection Method
Overview
We propose a framework for tracking arbitrary complex cell boundary movements, relying on a unique definition of protrusion and retraction as the pathlength a virtual edge marker traverses when moving continuously perpendicular to the cell boundary. We introduce the level set method as a numerical scheme to reconstruct continuous boundary movement in time-lapse image sequences with finite time sampling. For moderately complex movements, we describe a numerically less expensive method that satisfactorily approximates the definition. Densely sampled protrusion and retraction rates were accumulated in space-time charts revealing distinct morphodynamic states. Applying this technique to the profiling of epithelial cell protrusion we identified three different states. In the I-state, long cell edge sectors are synchronized in cycles of protrusion and retraction. In the V-state random bursts of protrusion initiate protrusion waves propagating transversally in both directions. Cells switch between both states dependent on the Rac1 activation level. Furthermore, the persistence of transversal waves in the V-state depends on Arp2/3 concentration. Inhibition of PAK shifts cells into a λ-state where continuous protrusion is occasionally interrupted by self-propagating ruffles. Our data support a model where activation of Rac1 mediates the propagation of protrusion waves, whose persistence depends on the relative abundance of activated Arp2/3 and polymerizable G-actin.