MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells
Journal Article

A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells

2024
Request Book From Autostore and Choose the Collection Method
Overview
Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI 3 ), fully processed under ambient conditions. PSCs utilising our α-FAPbI 3 reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA + in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA + -based perovskites can be competitively stable despite the inherent metastability of the α-phase. The use of harmful solvents to fabricate stable devices hampers the commercialization of perovskite solar cells. Here, the authors introduce a biorenewable solvent system and precursor-phase engineering to realize stable formamidinium lead triiodide-based solar cells.