MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
Journal Article

Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms

2022
Request Book From Autostore and Choose the Collection Method
Overview
The accurate intelligent identification and detection of road cracks is a key issue in road maintenance, and it has become popular to perform this task through the field of computer vision. In this paper, we proposed a deep learning-based crack detection method that initially uses the idea of image sparse representation and compressed sensing to preprocess the datasets. Only the pixels that represent the crack features remain, while most pixels of non-crack features are relatively sparse, which can significantly improve the accuracy and efficiency of crack identification. The proposed method achieved good results based on the limited datasets of crack images. Various algorithms were tested, namely, linear smooth, median filtering, Gaussian smooth, and grayscale threshold, where the optimal parameters of the various algorithms were analyzed and trained with faster regions with convolutional neural network features (faster R-CNN). The results of the experiments showed that the proposed method has good robustness, with higher detection efficiency in the presence of, for example, road markings, shallow cracks, multiple cracks, and blurring. The result shows that the improvement of mean average precision (mAP) can reach 5% compared with the original method.