MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
Journal Article

A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method

2022
Request Book From Autostore and Choose the Collection Method
Overview
Due to the rapid growth in IT technology, digital data have increased availability, creating novel security threats that need immediate attention. An intrusion detection system (IDS) is the most promising solution for preventing malicious intrusions and tracing suspicious network behavioral patterns. Machine learning (ML) methods are widely used in IDS. Due to a limited training dataset, an ML-based IDS generates a higher false detection ratio and encounters data imbalance issues. To deal with the data-imbalance issue, this research develops an efficient hybrid network-based IDS model (HNIDS), which is utilized using the enhanced genetic algorithm and particle swarm optimization(EGA-PSO) and improved random forest (IRF) methods. In the initial phase, the proposed HNIDS utilizes hybrid EGA-PSO methods to enhance the minor data samples and thus produce a balanced data set to learn the sample attributes of small samples more accurately. In the proposed HNIDS, a PSO method improves the vector. GA is enhanced by adding a multi-objective function, which selects the best features and achieves improved fitness outcomes to explore the essential features and helps minimize dimensions, enhance the true positive rate (TPR), and lower the false positive rate (FPR). In the next phase, an IRF eliminates the less significant attributes, incorporates a list of decision trees across each iterative process, supervises the classifier’s performance, and prevents overfitting issues. The performance of the proposed method and existing ML methods are tested using the benchmark datasets NSL-KDD. The experimental findings demonstrated that the proposed HNIDS method achieves an accuracy of 98.979% on BCC and 88.149% on MCC for the NSL-KDD dataset, which is far better than the other ML methods i.e., SVM, RF, LR, NB, LDA, and CART.