MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions
Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions
Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions
Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions
Journal Article

Variation in the growth and toxin production of Gymnodinium catenatum under different laboratory conditions

2022
Request Book From Autostore and Choose the Collection Method
Overview
The chain-forming dinoflagellate Gymnodinium catenatum is the only known gymnodinioid dinoflagellate that produces paralytic shellfish toxins (PST). Dense blooms caused by the dinoflagellate have been frequently reported in coastal waters of Fujian, China since 2017. While there is still limited understanding of the major physiological characteristics of G. catenatum isolated from Fujian coastal waters, the growth and toxin production of the G. catenatum strain were examined in batch cultures with different levels of irradiance, temperature, salinity, nitrate, and phosphate conditions. The results indicated that the highest maximum cell density of the strain was achieved at 70 µmol m−2 s−1, with the highest growth rate at 120 µmol m−2 s−1. The strain grew well within the temperature range of 15–30 °C, with maximum growth rate and cell density achieved at 20 °C. The dinoflagellate also showed higher tolerance to salinity variation (20–40), with the highest growth rate at salinity 25. Meanwhile, G. catenatum showed higher demand for nitrogen and phosphorus as indicated by its higher half-saturation constant. A decrease in nitrate and phosphate greatly inhibited the growth of G. catenatum. The toxin profile of the G. catenatum strain was conservative and dominated mainly by the N-sulfcarbamoyl C-toxins (> 95%), indicating its hypotoxicity. The cellular toxicity increased with the algal growth, with the highest cellular toxicity observed at the stationary growth phase. The cellular toxicity of G. catenatum also responded to environmental variations including lower temperature (15 °C), lower salinity (20), nitrate-repletion, and phosphate-depletion conditions which enhanced the cellular toxicity, while irradiance exerted non-significant influence. The present study depicted the physiological characteristics of the particular G. catenatum strain and provided valuable insight on the ecophysiology of G. catenatum in natural coastal waters.