MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands
Journal Article

Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands

2023
Request Book From Autostore and Choose the Collection Method
Overview
Injectable biomimetic hydrogels have great potential for use in regenerative medicine as cellular delivery vectors. However, they can suffer from issues relating to hypoxia, including poor cell survival, differentiation, and functional integration owing to the lack of an established vascular network. Here we engineer a hybrid myoglobin:peptide hydrogel that can concomitantly deliver stem cells and oxygen to the brain to support engraftment until vascularisation can occur naturally. We show that this hybrid hydrogel can modulate cell fate specification within progenitor cell grafts, resulting in a significant increase in neuronal differentiation. We find that the addition of myoglobin to the hydrogel results in more extensive innervation within the host tissue from the grafted cells, which is essential for neuronal replacement strategies to ensure functional synaptic connectivity. This approach could result in greater functional integration of stem cell-derived grafts for the treatment of neural injuries and diseases affecting the central and peripheral nervous systems. Injectable biomimetic hydrogels hold significant promise for tissue engineering applications. Here, the authors present a hybrid myoglobin:peptide hydrogel to overcome a critical oxygen shortage following neural stem cell transplantation, thus increasing cell survival and integration.