MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient
Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient
Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient
Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient
Journal Article

Proteasome inhibition overcomes resistance to targeted therapies in B-cell malignancy models and in an index patient

2025
Request Book From Autostore and Choose the Collection Method
Overview
Treatment of B-cell malignancies with the PI3K inhibitor (PI3Ki) idelalisib often results in high toxicity and resistance, with limited treatment alternatives for relapsed/refractory patients since idelalisib is recommended as a later or last line therapy. To investigate resistance mechanisms and identify alternative treatments, we studied functional phenotypes of idelalisib-resistant B-cell malignancy models. The idelalisib-resistant KARPAS1718 model remained sensitive to Bcl-2 inhibitors (Bcl-2i), whereas the resistant VL51 model showed reduced sensitivity compared to parental cells. Sensitivity correlated with phosphorylation and expression of the Bcl-2 family members Bcl-2 and Bim. Target addiction scoring revealed high dependence on the proteasome, and proteasome inhibitors (PI) were effective across models and in primary chronic lymphocytic leukemia (CLL) cells, independently of their PI3Ki- or Bcl-2i-sensitivities. PI treatment consistently upregulated Bim and Mcl-1, while Bcl-2 increased in KARPAS1718 and CLL cells. Bcl-2i plus PI combinations led to an additive effect in these models. A multi-refractory CLL patient in the IMPRESS-Norway trial (NCT04817956) treated with Bcl-2i plus PI showed initial clinical improvement but relapsed within four months. Treatment induced Bim and Mcl-1 upregulation and reduced cytotoxic CD8 + T-cell and CD56 dim NK-cell populations. Our findings suggest that PIs may overcome resistance to targeted therapies, and warrant further studies to optimize clinical responses.