Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
by
Petrillo, G.
, Yandel, E.
, Simard, L.
, Tosi, N.
, Bishai, M.
, LeCompte, T.
, Azam, M. B.
, Choate, S.
, Norrick, A.
, Nagu, S.
, Solovov, V.
, Horton-Smith, G. A.
, Berger, J.
, Kobilarcik, T.
, Cross, R.
, Zettlemoyer, J.
, Sapienza, P.
, Sztuc, A.
, Dias, M.
, Kvasnicka, J.
, Messier, M. D.
, Alemanno, F.
, Delmonte, N.
, Caceres V., G.
, Gardim, F.
, Centro, S.
, Westerdale, S.
, Learned, J.
, O’Sullivan, L.
, Roy, N.
, Brunetti, G.
, Soares Nunes, M.
, Zhang, S.
, Cerna, C.
, Shi, W.
, Bento Neves, F.
, Bian, J.
, Kudryavtsev, V. A.
, Oh, S. B.
, Rudik, D.
, Meregaglia, A.
, Goudzovski, E.
, Iliescu, A. M.
, Razafinime, H.
, Rondon, J. Rodriguez
, Paley, J. M.
, Hirsch, L. R.
, Wyenberg, J.
, Carniti, P.
, Aduszkiewicz, A.
, Vaughan, N.
, Kovalcuk, M.
, Antic, D.
, Bhatt, J.
, Chatterjee, A.
, Dytman, S.
, Seppela, D.
, Soderberg, M.
, Gomez Fajardo, L. S.
, Brooke, J.
, Last, D.
, Walton, T.
, Uchida, M. A.
, Miao, T.
, Falcone, A.
, Moreno-Granados, G.
, Tarpara, E.
, Englezos, P.
, Weber, C. M.
, Cox, C.
, Caracas, I.
, Kim, J.
, Peake, A.
, Shanahan, P.
, Winter, P.
, Lehnert, R.
, Mandujano, R. C.
, Dar, Z. A.
, Tamara, J.
, Osbiston, M.
, Pallavicini, M.
, Sanchez, M. C.
, Baldini, W.
, Onel, Y.
, Schukraft, A.
, Sensenig,
in
Algorithms
/ Argon
/ Astronomy
/ Astrophysics and Cosmology
/ Atoms & subatomic particles
/ Charged particles
/ Cosmic rays
/ Critical components
/ Deep learning
/ Design
/ Detectors
/ Electric fields
/ Elementary Particles
/ Flavors
/ Geometry
/ Hadrons
/ Heavy Ions
/ High resolution
/ Image resolution
/ Machine learning
/ Measurement Science and Instrumentation
/ Neural networks
/ Neutrinos
/ Nuclear Energy
/ Nuclear Physics
/ Particle physics
/ Pattern recognition
/ Physics
/ Physics and Astronomy
/ PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
/ Quantum Field Theories
/ Quantum Field Theory
/ Radiation counters
/ Reconstruction
/ Regular Article - Computing
/ Sensors
/ Software
/ Software and Data Science
/ Software development tools
/ String Theory
/ Topology
2025
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
by
Petrillo, G.
, Yandel, E.
, Simard, L.
, Tosi, N.
, Bishai, M.
, LeCompte, T.
, Azam, M. B.
, Choate, S.
, Norrick, A.
, Nagu, S.
, Solovov, V.
, Horton-Smith, G. A.
, Berger, J.
, Kobilarcik, T.
, Cross, R.
, Zettlemoyer, J.
, Sapienza, P.
, Sztuc, A.
, Dias, M.
, Kvasnicka, J.
, Messier, M. D.
, Alemanno, F.
, Delmonte, N.
, Caceres V., G.
, Gardim, F.
, Centro, S.
, Westerdale, S.
, Learned, J.
, O’Sullivan, L.
, Roy, N.
, Brunetti, G.
, Soares Nunes, M.
, Zhang, S.
, Cerna, C.
, Shi, W.
, Bento Neves, F.
, Bian, J.
, Kudryavtsev, V. A.
, Oh, S. B.
, Rudik, D.
, Meregaglia, A.
, Goudzovski, E.
, Iliescu, A. M.
, Razafinime, H.
, Rondon, J. Rodriguez
, Paley, J. M.
, Hirsch, L. R.
, Wyenberg, J.
, Carniti, P.
, Aduszkiewicz, A.
, Vaughan, N.
, Kovalcuk, M.
, Antic, D.
, Bhatt, J.
, Chatterjee, A.
, Dytman, S.
, Seppela, D.
, Soderberg, M.
, Gomez Fajardo, L. S.
, Brooke, J.
, Last, D.
, Walton, T.
, Uchida, M. A.
, Miao, T.
, Falcone, A.
, Moreno-Granados, G.
, Tarpara, E.
, Englezos, P.
, Weber, C. M.
, Cox, C.
, Caracas, I.
, Kim, J.
, Peake, A.
, Shanahan, P.
, Winter, P.
, Lehnert, R.
, Mandujano, R. C.
, Dar, Z. A.
, Tamara, J.
, Osbiston, M.
, Pallavicini, M.
, Sanchez, M. C.
, Baldini, W.
, Onel, Y.
, Schukraft, A.
, Sensenig,
in
Algorithms
/ Argon
/ Astronomy
/ Astrophysics and Cosmology
/ Atoms & subatomic particles
/ Charged particles
/ Cosmic rays
/ Critical components
/ Deep learning
/ Design
/ Detectors
/ Electric fields
/ Elementary Particles
/ Flavors
/ Geometry
/ Hadrons
/ Heavy Ions
/ High resolution
/ Image resolution
/ Machine learning
/ Measurement Science and Instrumentation
/ Neural networks
/ Neutrinos
/ Nuclear Energy
/ Nuclear Physics
/ Particle physics
/ Pattern recognition
/ Physics
/ Physics and Astronomy
/ PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
/ Quantum Field Theories
/ Quantum Field Theory
/ Radiation counters
/ Reconstruction
/ Regular Article - Computing
/ Sensors
/ Software
/ Software and Data Science
/ Software development tools
/ String Theory
/ Topology
2025
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
by
Petrillo, G.
, Yandel, E.
, Simard, L.
, Tosi, N.
, Bishai, M.
, LeCompte, T.
, Azam, M. B.
, Choate, S.
, Norrick, A.
, Nagu, S.
, Solovov, V.
, Horton-Smith, G. A.
, Berger, J.
, Kobilarcik, T.
, Cross, R.
, Zettlemoyer, J.
, Sapienza, P.
, Sztuc, A.
, Dias, M.
, Kvasnicka, J.
, Messier, M. D.
, Alemanno, F.
, Delmonte, N.
, Caceres V., G.
, Gardim, F.
, Centro, S.
, Westerdale, S.
, Learned, J.
, O’Sullivan, L.
, Roy, N.
, Brunetti, G.
, Soares Nunes, M.
, Zhang, S.
, Cerna, C.
, Shi, W.
, Bento Neves, F.
, Bian, J.
, Kudryavtsev, V. A.
, Oh, S. B.
, Rudik, D.
, Meregaglia, A.
, Goudzovski, E.
, Iliescu, A. M.
, Razafinime, H.
, Rondon, J. Rodriguez
, Paley, J. M.
, Hirsch, L. R.
, Wyenberg, J.
, Carniti, P.
, Aduszkiewicz, A.
, Vaughan, N.
, Kovalcuk, M.
, Antic, D.
, Bhatt, J.
, Chatterjee, A.
, Dytman, S.
, Seppela, D.
, Soderberg, M.
, Gomez Fajardo, L. S.
, Brooke, J.
, Last, D.
, Walton, T.
, Uchida, M. A.
, Miao, T.
, Falcone, A.
, Moreno-Granados, G.
, Tarpara, E.
, Englezos, P.
, Weber, C. M.
, Cox, C.
, Caracas, I.
, Kim, J.
, Peake, A.
, Shanahan, P.
, Winter, P.
, Lehnert, R.
, Mandujano, R. C.
, Dar, Z. A.
, Tamara, J.
, Osbiston, M.
, Pallavicini, M.
, Sanchez, M. C.
, Baldini, W.
, Onel, Y.
, Schukraft, A.
, Sensenig,
in
Algorithms
/ Argon
/ Astronomy
/ Astrophysics and Cosmology
/ Atoms & subatomic particles
/ Charged particles
/ Cosmic rays
/ Critical components
/ Deep learning
/ Design
/ Detectors
/ Electric fields
/ Elementary Particles
/ Flavors
/ Geometry
/ Hadrons
/ Heavy Ions
/ High resolution
/ Image resolution
/ Machine learning
/ Measurement Science and Instrumentation
/ Neural networks
/ Neutrinos
/ Nuclear Energy
/ Nuclear Physics
/ Particle physics
/ Pattern recognition
/ Physics
/ Physics and Astronomy
/ PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
/ Quantum Field Theories
/ Quantum Field Theory
/ Radiation counters
/ Reconstruction
/ Regular Article - Computing
/ Sensors
/ Software
/ Software and Data Science
/ Software development tools
/ String Theory
/ Topology
2025
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
Journal Article
Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
2025
Request Book From Autostore
and Choose the Collection Method
Overview
The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.
This website uses cookies to ensure you get the best experience on our website.