MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury
Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury
Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury
Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury
Journal Article

Quantitative Real-Time RT—PCR Analysis of Inflammatory Gene Expression Associated with Ischemia—Reperfusion Brain Injury

2002
Request Book From Autostore and Choose the Collection Method
Overview
Ischemia-reperfusion brain injury initiates an inflammatory response involving the expression of adhesion molecules and cytokines, some of which are regulated by the nuclear transcription factor NF-κB. In this study the authors examined mRNA expression levels for several important genes associated with inflammation at five time points (3, 6, 12, 24, and 72 hours) after transient middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. A sensitive and quantitative technique (TaqMan real-time QRT-PCR) was used to simultaneously measure mRNA levels for key cell adhesion molecules and inflammatory cytokines. Gene expression increased significantly in the injured hemisphere for interleukin (IL)-1β (12-fold increase at 24 hours), IL-6 (25-fold increase at 6 hours) and ICAM-1 (4-fold increase at 24 hours), and the in-terhemispheric differences for these genes were significant for every time point examined (P < 0.05 for all values). Tumor necrosis factor-α mRNA was upregulated in the injured versus uninjured hemisphere from 3 to 24 hours (5-fold increase at 6 hours), while E-selectin showed a significant increase in mRNA levels from 6 to 24 hours after MCAO (10-fold increase at 6 hours) (P < 0.05 for all values). VCAM-1 mRNA levels did not respond differentially to injury at any time point between the two brain hemispheres. At all time points examined, activated NF-κB immunoreactivity was observed in cells throughout the infarct-damaged tissue. These results are consistent with the proinflammatory properties of the induced molecules, which are involved in the initiation of the inflammatory cascade, and may thus contribute to secondary cellular responses that lead to further brain damage.