MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
Journal Article

Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers

2017
Request Book From Autostore and Choose the Collection Method
Overview
The increased feature space available in object-based classification environments (e.g., extended spectral feature sets per object, shape properties, or textural features) has a high potential of improving classifications. However, the availability of a large number of derived features per segmented object can also lead to a time-consuming and subjective process of optimizing the feature subset. The objectives of this study are to evaluate the effect of the advanced feature selection methods of popular supervised classifiers (Support Vector Machines (SVM) and Random Forest (RF)) for the example of object-based mapping of an agricultural area using Unmanned Aerial Vehicle (UAV) imagery, in order to optimize their usage for object-based agriculture pattern recognition tasks. In this study, several advanced feature selection methods were divided into both types of classifiers (SVM and RF) to conduct further evaluations using five feature-importance-evaluation methods and three feature-subset-evaluation methods. A visualization method was used to measure the change pattern of mean classification accuracy with the increase of features used, and a two-tailed t-test was used to determine the difference between two population means for both repeated ten classification accuracies. This study mainly contribute to the uncertainty analysis of feature selection for object-based classification instead of the per-pixel method. The results highlight that the RF classifier is relatively insensitive to the number of input features, even for a small training set size, whereby a negative impact of feature set size on the classification accuracy of the SVM classifier was observed. Overall, the SVM Recursive Feature Elimination (SVM-RFE) seems to be an appropriate method for both groups of classifiers, while the Correlation-based Feature Selection (CFS) is the best feature-subset-evaluation method. Most importantly, this study verified that feature selection for both classifiers is crucial for the evolving field of Object-based Image Analysis (OBIA): It is highly advisable for feature selection to be performed before object-based classification, even though an adverse impact could sometimes be observed from the wrapper methods.