MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware
Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware
Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware
Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware
Journal Article

Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware

2024
Request Book From Autostore and Choose the Collection Method
Overview
This article introduces a novel middleware that utilizes cost-effective, low-power computing devices like Raspberry Pi to analyze data from wireless sensor networks (WSNs). It is designed for indoor settings like historical buildings and museums, tracking visitors and identifying points of interest. It serves as an evacuation aid by monitoring occupancy and gauging the popularity of specific areas, subjects, or art exhibitions. The middleware employs a basic form of the MapReduce algorithm to gather WSN data and distribute it across available computer nodes. Data collected by RFID sensors on visitor badges is stored on mini-computers placed in exhibition rooms and then transmitted to a remote database after a preset time frame. Utilizing MapReduce for data analysis and a leader election algorithm for fault tolerance, this middleware showcases its viability through metrics, demonstrating applications like swift prototyping and accurate validation of findings. Despite using simpler hardware, its performance matches resource-intensive methods involving audiovisual and AI techniques. This design’s innovation lies in its fault-tolerant, distributed setup using budget-friendly, low-power devices rather than resource-heavy hardware or methods. Successfully tested at a historical building in Greece (M. Hatzidakis’ residence), it is tailored for indoor spaces. This paper compares its algorithmic application layer with other implementations, highlighting its technical strengths and advantages. Particularly relevant in the wake of the COVID-19 pandemic and general monitoring middleware for indoor locations, this middleware holds promise in tracking visitor counts and overall building occupancy.