MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations
Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations
Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations
Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations
Journal Article

Detection of non‐climatic biases in land surface temperature records by comparing climatic data and their model simulations

2021
Request Book From Autostore and Choose the Collection Method
Overview
The 0.6 °C warming observed in global temperature datasets from 1940 to 1960 to 2000–2020 can be partially due to urban heat island (UHI) and other non-climatic biases in the underlying data, although several previous studies have argued to the contrary. Here we identify land regions where such biases could be present by locally evaluating their diurnal temperature range (DTR = TMax − TMin trends between the decades 1945–1954 and 2005–2014 and between the decades 1951–1960 and 1991–2000 versus their synthetic hindcasts produced by the CMIP5 models. Vast regions of Asia (in particular Russia and China) and North America, a significant part of Europe, part of Oceania, and relatively small parts of South America (in particular Colombia and Venezuela) and Africa show DTR reductions up to 0.5–1.5 °C larger than the hindcasted ones, mostly where fast urbanization has occurred, such as in central-east China. Besides, it is found: (1) from May to October, TMax globally warmed 40% less than the hindcast; (2) in Greenland, which appears nearly free of any non-climatic contamination, TMean warmed about 50% less than the hindcast; (3) the world macro-regions with, on average, the lowest DTR reductions and with low urbanization (60S-30N:120 W–90 E and 60 S–10 N:90 E–180 E: Central and South America, Africa, and Oceania) warmed about 20–30% less than the models’ hindcast. Yet, the world macro-region with, on average, the largest DTR reductions and with high urbanization (30 N–80 N:180 W–180 E: most of North America, Europe, and Central Asia) warmed just a little bit more (5%) than the hindcast, which indicates that the models well agree only with potentially problematic temperature records. Indeed, also tree-based proxy temperature reconstructions covering the 30°N–70°N land area produce significantly less warming than the correspondent instrumentally-based temperature record since 1980. Finally, we compare land and sea surface temperature data versus their CMIP5 simulations and find that 25–45% of the 1 °C land warming from 1940–1960 to 2000–2020 could be due to non-climatic biases. By merging the sea surface temperature record (assumed to be correct) and an adjusted land temperature record based on the model prediction, the global warming during the same period is found to be 15–25% lower than reported. The corrected warming is compatible with that shown by the satellite UAH MSU v6.0 low troposphere global temperature record since 1979. Implications for climate model evaluation and future global warming estimates are briefly addressed.