MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Tailoring photosensitive ROS for advanced photodynamic therapy
Tailoring photosensitive ROS for advanced photodynamic therapy
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Tailoring photosensitive ROS for advanced photodynamic therapy
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tailoring photosensitive ROS for advanced photodynamic therapy
Tailoring photosensitive ROS for advanced photodynamic therapy

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tailoring photosensitive ROS for advanced photodynamic therapy
Tailoring photosensitive ROS for advanced photodynamic therapy
Journal Article

Tailoring photosensitive ROS for advanced photodynamic therapy

2021
Request Book From Autostore and Choose the Collection Method
Overview
Photodynamic therapy (PDT) has been considered a noninvasive and cost-effective modality for tumor treatment. However, the complexity of tumor microenvironments poses challenges to the implementation of traditional PDT. Here, we review recent advances in PDT to resolve the current problems. Major breakthroughs in PDTs are enabling significant progress in molecular medicine and are interconnected with innovative strategies based on smart bio/nanomaterials or therapeutic insights. We focus on newly developed PDT strategies designed by tailoring photosensitive reactive oxygen species generation, which include the use of proteinaceous photosensitizers, self-illumination, or oxygen-independent approaches. While these updated PDT platforms are expected to enable major advances in cancer treatment, addressing future challenges related to biosafety and target specificity is discussed throughout as a necessary goal to expand the usefulness of PDT. Photodynamic therapy: Bringing light into tumors to treat cancer Advancements in photosensitive proteins, nanomaterials, and luminescence are improving the ability of photodynamic therapy (PDT) to attack cancerous tumors. In PDT photosensitive drugs are introduced into tumors, which are then exposed to light, producing reactive oxygen species that kill cells. Young-Pil Kim and coworkers at Hanyang University in Seoul, South Korea, reviewed the challenges of PDT, including drug side effects and how to deliver light into tumors. They highlight advances in protein-based photosensitive drugs, which avoid the side effects of their non-protein counterparts, and could even be generated within the body through genetic manipulation. Bioluminescent and chemiluminescent chemicals have been incorporated into nanomaterials such as quantum dots, carrying light deep into tumors. The use of hybrid oxygen-carrying proteins can provide oxygen for PDT, even inside oxygen-poor tumors that have depleted the local blood supply.