MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Thalamus plays a central role in ongoing cortical functioning
Thalamus plays a central role in ongoing cortical functioning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Thalamus plays a central role in ongoing cortical functioning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Thalamus plays a central role in ongoing cortical functioning
Thalamus plays a central role in ongoing cortical functioning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Thalamus plays a central role in ongoing cortical functioning
Thalamus plays a central role in ongoing cortical functioning
Journal Article

Thalamus plays a central role in ongoing cortical functioning

2016
Request Book From Autostore and Choose the Collection Method
Overview
In this Perspective, Murray Sherman discusses connectivity in the thalamocortical system, including the evidence that cortical areas are connected in parallel by direct and transthalamic pathways. Because thalamus receives inputs that form collaterals with subcortical motor regions, the author suggests that it may relay efference copy information. Several challenges to current views of thalamocortical processing are offered here. Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver and modulator. We suggest that driver inputs are the main conduits of information and that modulator inputs modify how driver inputs are processed. Different driver sources reveal two types of thalamic relays: first order relays receive subcortical driver input (for example, retinal input to the lateral geniculate nucleus), whereas higher order relays (for example, pulvinar) receive driver input from layer 5 of cortex and participate in cortico-thalamo-cortical (or transthalamic) circuits. These transthalamic circuits represent an unappreciated aspect of cortical functioning, which I discuss here. Direct corticocortical connections are often paralleled by transthalamic ones. Furthermore, driver inputs to thalamus, both first and higher order, typically arrive via branching axons, and the transthalamic branch often innervates subcortical motor centers, leading to the suggestion that these inputs to thalamus serve as efference copies.