MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes
Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes
Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes
Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes
Journal Article

Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes

2018
Request Book From Autostore and Choose the Collection Method
Overview
Frataxin is a highly conserved protein encoded by the frataxin ( FXN ) gene. The full-length 210-amino acid form of protein frataxin (1–210; isoform A) expressed in the cytosol of cells rapidly translocates to the mitochondria, where it is converted to the mature form (81–210) by mitochondrial processing peptidase. Mature frataxin (81–210) is a critically important protein because it facilitates the assembly of mitochondrial iron-sulfur cluster protein complexes such as aconitase, lipoate synthase, and succinate dehydrogenases. Decreased expression of frataxin protein is responsible for the devastating rare genetic disease of Friedreich’s ataxia. The mitochondrial form of frataxin has long been thought to be present in erythrocytes even though paradoxically, erythrocytes lack mitochondria. We have discovered that erythrocyte frataxin is in fact a novel isoform of frataxin (isoform E) with 135-amino acids and an N-terminally acetylated methionine residue. There is three times as much isoform E in erythrocytes (20.9 ± 6.4 ng/mL) from the whole blood of healthy volunteers (n = 10) when compared with the mature mitochondrial frataxin present in other blood cells (7.1 ± 1.0 ng/mL). Isoform E lacks a mitochondrial targeting sequence and so is distributed to both cytosol and the nucleus when expressed in cultured cells. When extra-mitochondrial frataxin isoform E is expressed in HEK 293 cells, it is converted to a shorter isoform identical to the mature frataxin found in mitochondria, which raises the possibility that it is involved in disease etiology. The ability to specifically quantify extra-mitochondrial and mitochondrial isoforms of frataxin in whole blood will make it possible to readily follow the natural history of diseases such as Friedreich’s ataxia and monitor the efficacy of therapeutic interventions.