MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display
Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display
Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display
Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display
Journal Article

Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display

2022
Request Book From Autostore and Choose the Collection Method
Overview
Deducing the input signal for a tactile display to present the target surface (i.e., solving the inverse problem for tactile displays) is challenging. We proposed the encoding and presentation (EP) method in our prior work, where we encoded the target surface by scanning it using an array of piezoelectric devices (encoding) and then drove the piezoelectric devices using the obtained signals to display the surface (presentation). The EP method reproduced the target texture with an accuracy of over 80% for the five samples tested, which we refer to as replicability. Machine learning is a promising method for solving inverse problems. In this study, we designed a neural network to connect the subjective evaluation of tactile sensation and the input signals to a display; these signals are described as time-domain waveforms. First, participants were asked to touch the surface presented by the mechano-tactile display based on the encoded data from the EP method. Then, the participants recorded the similarity of the surface compared to five material samples, which were used as the input. The encoded data for the material samples were used as the output to create a dataset of 500 vectors. By training a multilayer perceptron with the dataset, we deduced new inputs for the display. The results indicate that using machine learning for fine tuning leads to significantly better accuracy in deducing the input compared to that achieved using the EP method alone. The proposed method is therefore considered a good solution for the inverse problem for tactile displays.