MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut
Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut
Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut
Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut
Journal Article

Mapping QTLs for early leaf spot resistance and yield component traits using an interspecific AB-QTL population in peanut

2025
Request Book From Autostore and Choose the Collection Method
Overview
Early leaf spot (ELS), caused by Passalora personata (syn. Cercospora arachidicola ), is a highly damaging peanut disease worldwide. While there are limited sources of resistance in cultivated peanut cultivars, wild relatives carry alleles for strong resistance, making them a valuable strategic resource for peanut improvement. So far, only a few wild diploid species have been utilized to transfer resistant alleles to cultivars. To mitigate the risk of resistance breakdown by pathogens, it is important to diversify the sources of resistance when breeding for disease resistance. In this study, we created an AB-QTL population by crossing an induced allotetraploid (IpaCor1), which combines the genomes of the diploid species Arachis ipaënsis and A. correntina , with the susceptible cultivar Fleur11. A. correntina has been reported to possess strong resistance to leaf spot diseases. The AB-QTL population was genotyped with the Axiom-Arachis 48K SNPs and evaluated for ELS resistance under natural infestation over three years in Senegal. Marker/trait associations enabled the mapping of five QTLs for ELS resistance on chromosomes A02, A03, A08, B04, and B09. Except for the QTL on chromosome B09, the wild species contributed favorable alleles at all other QTLs. One genomic region on chromosome A02 contained several relevant QTLs, contributing to ELS resistance, earliness, and increased biomass yield, potentially allowing marker-assisted selection to introduce this region into elite cultivars. This study’s findings have aided in diversifying the sources of resistance to ELS disease and other important agronomic traits, providing another compelling example of the value of peanut wild species in improving cultivated peanut.