MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hierarchical contrastive learning for multi-label text classification
Hierarchical contrastive learning for multi-label text classification
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hierarchical contrastive learning for multi-label text classification
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hierarchical contrastive learning for multi-label text classification
Hierarchical contrastive learning for multi-label text classification

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hierarchical contrastive learning for multi-label text classification
Hierarchical contrastive learning for multi-label text classification
Journal Article

Hierarchical contrastive learning for multi-label text classification

2025
Request Book From Autostore and Choose the Collection Method
Overview
Multi-label text classification presents a significant challenge within the field of text classification, particularly due to the hierarchical nature of labels, where labels are organized in a tree-like structure that captures parent-child and sibling relationships. This hierarchy reflects semantic dependencies among labels, with higher-level labels representing broader categories and lower-level labels capturing more specific distinctions. Traditional methods often fail to deeply understand and leverage this hierarchical structure, overlooking the subtle semantic differences and correlations that distinguish one label from another. To address this shortcoming, we introduce a novel method called Hierarchical Contrastive Learning for Multi-label Text Classification (HCL-MTC). Our approach leverages the contrastive knowledge embedded within label relationships by constructing a graph representation that explicitly models the hierarchical dependencies among labels. Specifically, we recast multi-label text classification as a multi-task learning problem, incorporating a hierarchical contrastive loss that is computed through a carefully designed sampling process. This unique loss function enables our model to effectively capture both the correlations and distinctions among labels, thereby enhancing the model’s ability to learn the intricacies of the label hierarchy. Experimental results on widely-used datasets, such as RCV1-v2 and WoS, demonstrate that our proposed HCL-MTC model achieves substantial performance gains compared to baseline methods.