MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice
Journal Article

Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice

2019
Request Book From Autostore and Choose the Collection Method
Overview
This paper presents the first empirical estimates of dimethyl sulfide (DMS) gas fluxes across permeable sea ice in the Arctic. DMS is known to act as a major potential source of aerosols that strongly influence the Earth’s radiative balance in remote marine regions during the ice-free season. Results from a sampling campaign, undertaken in 2015 between June 2 and June 28 in the ice-covered Western Baffin Bay, revealed the presence of high algal biomass in the bottom 0.1-m section of sea ice (21 to 380 µg Chl a L–1) combined with the presence of high DMS concentrations (212–840 nmol L–1). While ice algae acted as local sources of DMS in bottom sea ice, thermohaline changes within the brine network, from gravity drainage to vertical stabilization, exerted strong control on the distribution of DMS within the interior of the ice. We estimated both the mean DMS molecular diffusion coefficient in brine (5.2 × 10–5 cm2 s–1 ± 51% relative S.D., n = 10) and the mean bulk transport coefficient within sea ice (33 × 10–5 cm2 s–1 ± 41% relative S.D., n = 10). The estimated DMS fluxes ± S.D. from the bottom ice to the atmosphere ranged between 0.47 ± 0.08 µmol m–2 d–1 (n = 5, diffusion) and 0.40 ± 0.15 µmol m–2 d–1 (n = 5, bulk transport) during the vertically stable phase. These fluxes fall within the lower range of direct summer sea-to-air DMS fluxes reported in the Arctic. Our results indicate that upward transport of DMS, from the algal-rich bottom of first-year sea ice through the permeable sea ice, may represent an important pathway for this biogenic gas toward the atmosphere in ice-covered oceans in spring and summer.