MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis
Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis
Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis
Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis
Journal Article

Gas6 and Protein S Ligands Cooperate to Regulate MerTK Rhythmic Activity Required for Circadian Retinal Phagocytosis

2024
Request Book From Autostore and Choose the Collection Method
Overview
Among the myriad of existing tyrosine kinase receptors, the TAM family—abbreviated from Tyro3, Axl, and Mer tyrosine kinase (MerTK)—has been extensively studied with an outstanding contribution from the team of Prof. Greg Lemke. MerTK activity is implicated in a wide variety of functions involving the elimination of apoptotic cells and has recently been linked to cancers, auto-immune diseases, and atherosclerosis/stroke. In the retina, MerTK is required for the circadian phagocytosis of oxidized photoreceptor outer segments by the retinal-pigment epithelial cells, a function crucial for the long-term maintenance of vision. We previously showed that MerTK ligands carry the opposite role in vitro, with Gas6 inhibiting the internalization of photoreceptor outer segments while Protein S acts conversely. Using site-directed mutagenesis and ligand-stimulated phagocytosis assays on transfected cells, we presently demonstrate, for the first time, that Gas6 and Protein S recognize different amino acids on MerTK Ig-like domains. In addition, MerTK’s function in retinal-pigment epithelial cells is rhythmic and might thus rely on the respective stoichiometry of both ligands at different times of the day. Accordingly, we show that ligand bioavailability varies during the circadian cycle using RT-qPCR and immunoblots on retinal and retinal-pigment epithelial samples from control and beta5 integrin knockout mice where retinal phagocytosis is arrhythmic. Taken together, our results suggest that Gas6 and Protein S might both contribute to refine the acute regulation of MerTK in time for the daily phagocytic peak.