MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses
Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses
Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses
Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses
Journal Article

Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses

2013
Request Book From Autostore and Choose the Collection Method
Overview
A single-step, multiplex, real-time polymerase chain reaction (RT-PCR) was developed for the simultaneous and differential laboratory diagnosis of Classical swine fever virus (CSFV) and African swine fever virus (ASFV) alongside an exogenous internal control RNA (IC-RNA). Combining a single extraction methodology and primer and probe sets for detection of the three target nucleic acids CSFV, ASFV and IC-RNA, had no effect on the analytical sensitivity of the assay and the new triplex RT-PCR was comparable to standard PCR techniques for CSFV and ASFV diagnosis. After optimisation the assay had a detection limit of 5 CSFV genome copies and 22 ASFV genome copies. Analytical specificity of the triplex assay was validated using a panel of viruses representing 9 of the 11 CSFV subgenotypes, at least 8 of the 22 ASFV genotypes as well as non-CSFV pestiviruses. Positive and negative clinical samples from animals infected experimentally, due to field exposure or collected from the UK which is free from both swine diseases, were used to evaluate the diagnostic sensitivity and specificity for detection of both viruses. The diagnostic sensitivity was 100% for both viruses whilst diagnostic specificity estimates were 100% for CSFV detection and 97.3% for ASFV detection. The inclusion of a heterologous internal control allowed identification of false negative results, which occurred at a higher level than expected. The triplex assay described here offers a valuable new tool for the differential detection of the causative viruses of two clinically indistinguishable porcine diseases, whose geographical occurrence is increasingly overlapping.