Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale
by
Masson, Valéry
, Honnert, Rachel
, Couvreux, Fleur
in
Atmospheric models
/ Atmospheric sciences
/ Atmospheric turbulence
/ Boundary layer
/ Boundary layer height
/ Boundary layers
/ Clouds
/ Computational fluid dynamics
/ Convective clouds
/ Diagnostic systems
/ Dimensional analysis
/ Earth, ocean, space
/ Eddies
/ Exact sciences and technology
/ External geophysics
/ Finite element method
/ Fluid flow
/ Heat
/ Height
/ Illustrations
/ Kinetic energy
/ Large eddy simulation
/ Large eddy simulations
/ Mathematical models
/ Meteorology
/ Mixed layer
/ Mixing ratio
/ Modelling
/ Moisture effects
/ Oceanic eddies
/ Parametrization
/ Physics of the high neutral atmosphere
/ Potential temperature
/ Scaling
/ Sciences of the Universe
/ Similarity
/ Similarity measures
/ Similarity theorem
/ Studies
/ Turbulence
/ Turbulent flow
/ Turbulent kinetic energy
/ Variance
2011
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale
by
Masson, Valéry
, Honnert, Rachel
, Couvreux, Fleur
in
Atmospheric models
/ Atmospheric sciences
/ Atmospheric turbulence
/ Boundary layer
/ Boundary layer height
/ Boundary layers
/ Clouds
/ Computational fluid dynamics
/ Convective clouds
/ Diagnostic systems
/ Dimensional analysis
/ Earth, ocean, space
/ Eddies
/ Exact sciences and technology
/ External geophysics
/ Finite element method
/ Fluid flow
/ Heat
/ Height
/ Illustrations
/ Kinetic energy
/ Large eddy simulation
/ Large eddy simulations
/ Mathematical models
/ Meteorology
/ Mixed layer
/ Mixing ratio
/ Modelling
/ Moisture effects
/ Oceanic eddies
/ Parametrization
/ Physics of the high neutral atmosphere
/ Potential temperature
/ Scaling
/ Sciences of the Universe
/ Similarity
/ Similarity measures
/ Similarity theorem
/ Studies
/ Turbulence
/ Turbulent flow
/ Turbulent kinetic energy
/ Variance
2011
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale
by
Masson, Valéry
, Honnert, Rachel
, Couvreux, Fleur
in
Atmospheric models
/ Atmospheric sciences
/ Atmospheric turbulence
/ Boundary layer
/ Boundary layer height
/ Boundary layers
/ Clouds
/ Computational fluid dynamics
/ Convective clouds
/ Diagnostic systems
/ Dimensional analysis
/ Earth, ocean, space
/ Eddies
/ Exact sciences and technology
/ External geophysics
/ Finite element method
/ Fluid flow
/ Heat
/ Height
/ Illustrations
/ Kinetic energy
/ Large eddy simulation
/ Large eddy simulations
/ Mathematical models
/ Meteorology
/ Mixed layer
/ Mixing ratio
/ Modelling
/ Moisture effects
/ Oceanic eddies
/ Parametrization
/ Physics of the high neutral atmosphere
/ Potential temperature
/ Scaling
/ Sciences of the Universe
/ Similarity
/ Similarity measures
/ Similarity theorem
/ Studies
/ Turbulence
/ Turbulent flow
/ Turbulent kinetic energy
/ Variance
2011
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale
Journal Article
A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale
2011
Request Book From Autostore
and Choose the Collection Method
Overview
Turbulence is well represented by atmospheric models at very fine grid sizes, from 10 to 100 m, for which turbulent movements are mainly resolved, and by atmospheric models with grid sizes greater than 2 km, for which those movements are entirely parameterized. But what happens at intermediate scales, Wyngaard’s so-called terra incognita? Here an original method is presented that provides a new diagnostic by calculating the subgrid and resolved parts of five variables at different scales: turbulent kinetic energy (TKE), heat and moisture fluxes, and potential temperature and mixing ratio variances. They are established at intermediate scales for dry and cumulus-topped convective boundary layers. The similarity theorem allows the determination of the dimensionless variables of the problem. When the subgrid and resolved parts are studied, a new dimensionless variable, the dimensionless mesh size , needs to be added to the Deardorff free convective scaling variables, where h is the boundary layer height and hc is the height of the cloud layer. Similarity functions for the subgrid and resolved parts are assumed to be the product of the similarity function of the total (subgrid plus resolved) variables and a “partial” similarity function that depends only on . In order to determine the partial similarity function form, large-eddy simulations (LES) of five dry and cloudy convective boundary layers are used. The resolved and subgrid parts of the variables at coarser grid sizes are then deduced from the LES fields. The evolution of the subgrid and resolved parts in the boundary layer with is as follows: fine grids mainly resolve variables. As the mesh becomes coarser, more eddies are subgrid. Finally, for very large meshes, turbulence is entirely subgrid. A scale therefore exists for which the subgrid and resolved parts are equal. This is obtained for in the case of TKE, 0.4 for the potential temperature variance, and 0.8 for the mixing ratio variance, indicating that the velocity structures are smaller than those for the potential temperature, which are smaller than those for the mixing ratio. Furthermore, boundary layers capped by convective clouds have structures larger than dry boundary layer ones as displayed by the scaling in the partial similarity functions. This new diagnostic gives a reference for evaluating current and future parameterizations at kilometric scales. As an illustration, the parameterizations of a mesoscale model are eventually evaluated at intermediate scales. In its standard version, the model produces too many resolved movements, as the turbulence scheme does not sufficiently represent the impact of the subgrid thermal. This is not true when a mass-flux scheme is introduced. However in this case, a completely subgrid thermal is modeled leading to an overestimation of the subgrid part.
Publisher
American Meteorological Society
Subject
This website uses cookies to ensure you get the best experience on our website.