MbrlCatalogueTitleDetail

Do you wish to reserve the book?
ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma
ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma
ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma
ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma
Journal Article

ELOVL5‐mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma

2022
Request Book From Autostore and Choose the Collection Method
Overview
Renal cell carcinoma (RCC) features altered lipid metabolism and accumulated polyunsaturated fatty acids (PUFAs). Elongation of very long–chain fatty acid (ELOVL) family enzymes catalyze fatty acid elongation, and ELOVL5 is indispensable for PUFAs elongation, but its role in RCC progression remains unclear. Here, we show that higher levels of ELOVL5 correlate with poor RCC clinical prognosis. Liquid chromatography/electrospray ionization‐tandem mass spectrometry analysis showed decreases in ELOVL5 end products (arachidonic acid and eicosapentaenoic acid) under CRISPR/Cas9‐mediated knockout of ELOVL5 while supplementation with these fatty acids partially reversed the cellular proliferation and invasion effects of ELOVL5 knockout. Regarding cellular proliferation and invasion, CRISPR/Cas9‐mediated knockout of ELOVL5 suppressed the formation of lipid droplets and induced apoptosis via endoplasmic reticulum stress while suppressing renal cancer cell proliferation and in vivo tumor growth. Furthermore, CRISPR/Cas9‐mediated knockout of ELOVL5 inhibited AKT Ser473 phosphorylation and suppressed renal cancer cell invasion through chemokine (C‐C motif) ligand‐2 downregulation by AKT‐mTOR‐STAT3 signaling. Collectively, these results suggest that ELOVL5‐mediated fatty acid elongation promotes not only cellular proliferation but also invasion in RCC. Elevated ELOVL5 expression is associated with poor renal cancer clinical prognosis. ELOVL5 promotes cellular proliferation by inhibiting apoptosis. ELOVL5 promotes cellular invasion via the AKT‐mTOR‐STAT3‐CCL2 signaling pathway.