MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Learning spatial hearing via innate mechanisms
Learning spatial hearing via innate mechanisms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Learning spatial hearing via innate mechanisms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Learning spatial hearing via innate mechanisms
Learning spatial hearing via innate mechanisms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Learning spatial hearing via innate mechanisms
Learning spatial hearing via innate mechanisms
Journal Article

Learning spatial hearing via innate mechanisms

2025
Request Book From Autostore and Choose the Collection Method
Overview
The acoustic cues used by humans and other animals to localise sounds are subtle, and change throughout our lifetime. This means that we need to constantly relearn or recalibrate our sound localisation circuit. This is often thought of as a “supervised” learning process where a “teacher” (for example, a parent, or your visual system) tells you whether or not you guessed the location correctly, and you use this information to update your localiser. However, there is not always an obvious teacher (for example in babies or blind people). Using computational models, we showed that approximate feedback from a simple innate circuit, such as that can distinguish left from right (e.g. the auditory orienting response), is sufficient to learn an accurate full-range sound localiser. Moreover, using this mechanism in addition to supervised learning can more robustly maintain the adaptive neural representation. We find several possible neural mechanisms that could underlie this type of learning, and hypothesise that multiple mechanisms may be present and provide examples in which these mechanisms can interact with each other. We conclude that when studying spatial hearing, we should not assume that the only source of learning is from the visual system or other supervisory signals. Further study of the proposed mechanisms could allow us to design better rehabilitation programmes to accelerate relearning/recalibration of spatial hearing.