Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Forging our understanding of lncRNAs in the brain
by
Lim, Daniel A
, Andersen, Rebecca E
in
Brain
/ Molecular modelling
/ Neurobiology
/ Neurodevelopmental disorders
/ Neurological diseases
/ Non-coding RNA
/ Nucleotides
/ Ribonucleic acid
/ RNA
/ Transcription
2018
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Forging our understanding of lncRNAs in the brain
by
Lim, Daniel A
, Andersen, Rebecca E
in
Brain
/ Molecular modelling
/ Neurobiology
/ Neurodevelopmental disorders
/ Neurological diseases
/ Non-coding RNA
/ Nucleotides
/ Ribonucleic acid
/ RNA
/ Transcription
2018
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Forging our understanding of lncRNAs in the brain
2018
Request Book From Autostore
and Choose the Collection Method
Overview
During both development and adulthood, the human brain expresses many thousands of long noncoding RNAs (lncRNAs), and aberrant lncRNA expression has been associated with a wide range of neurological diseases. Although the biological significance of most lncRNAs remains to be discovered, it is now clear that certain lncRNAs carry out important functions in neurodevelopment, neural cell function, and perhaps even diseases of the human brain. Given the relatively inclusive definition of lncRNAs—transcripts longer than 200 nucleotides with essentially no protein coding potential—this class of noncoding transcript is both large and very diverse. Furthermore, emerging data indicate that lncRNA genes can act via multiple, non-mutually exclusive molecular mechanisms, and specific functions are difficult to predict from lncRNA expression or sequence alone. Thus, the different experimental approaches used to explore the role of a lncRNA might each shed light upon distinct facets of its overall molecular mechanism, and combining multiple approaches may be necessary to fully illuminate the function of any particular lncRNA. To understand how lncRNAs affect brain development and neurological disease, in vivo studies of lncRNA function are required. Thus, in this review, we focus our discussion upon a small set of neural lncRNAs that have been experimentally manipulated in mice. Together, these examples illustrate how studies of individual lncRNAs using multiple experimental approaches can help reveal the richness and complexity of lncRNA function in both neurodevelopment and diseases of the brain.
Publisher
Springer Nature B.V
This website uses cookies to ensure you get the best experience on our website.