MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics
Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics
Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics
Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics
Journal Article

Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics

2021
Request Book From Autostore and Choose the Collection Method
Overview
PurposeTo evaluate radiomic features extracted from standard static images (20–40 min p.i.), early summation images (5–15 min p.i.), and dynamic [18F]FET PET images for the prediction of TERTp-mutation status in patients with IDH-wildtype high-grade glioma.MethodsA total of 159 patients (median age 60.2 years, range 19–82 years) with newly diagnosed IDH-wildtype diffuse astrocytic glioma (WHO grade III or IV) and dynamic [18F]FET PET prior to surgical intervention were enrolled and divided into a training (n = 112) and a testing cohort (n = 47) randomly. First-order, shape, and texture radiomic features were extracted from standard static (20–40 min summation images; TBR20–40), early static (5–15 min summation images; TBR5–15), and dynamic (time-to-peak; TTP) images, respectively. Recursive feature elimination was used for feature selection by 10-fold cross-validation in the training cohort after normalization, and logistic regression models were generated using the radiomic features extracted from each image to differentiate TERTp-mutation status. The areas under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive value were calculated to illustrate diagnostic power in both the training and testing cohort.ResultsThe TTP model comprised nine selected features and achieved highest predictability of TERTp-mutation with an AUC of 0.82 (95% confidence interval 0.71–0.92) and sensitivity of 92.1% in the independent testing cohort. Weak predictive capability was obtained in the TBR5–15 model, with an AUC of 0.61 (95% CI 0.42–0.80) in the testing cohort, while no predictive power was observed in the TBR20–40 model.ConclusionsRadiomics based on TTP images extracted from dynamic [18F]FET PET can predict the TERTp-mutation status of IDH-wildtype diffuse astrocytic high-grade gliomas with high accuracy preoperatively.