MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition
Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition
Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition
Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition
Journal Article

Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition

2024
Request Book From Autostore and Choose the Collection Method
Overview
Gait recognition is a behavioral biometric technique that identifies individuals based on their unique walking patterns, enabling long-distance identification. Traditional gait recognition methods rely on appearance-based approaches that utilize background-subtracted silhouette sequences to extract gait features. While effective and easy to compute, these methods are susceptible to variations in clothing, carried objects, and illumination changes, compromising the extraction of discriminative features in real-world applications. In contrast, model-based approaches using skeletal key points offer robustness against these covariates. Advances in human pose estimation (HPE) algorithms using convolutional neural networks (CNNs) have facilitated the extraction of skeletal key points, addressing some challenges of model-based approaches. However, the performance of skeleton-based methods still lags behind that of appearance-based approaches. This paper aims to bridge this performance gap by introducing a multi-biometric framework that extracts features from multiple HPE algorithms for gait recognition, employing feature-level fusion (FLF) and decision-level fusion (DLF) by leveraging a single-source multi-sample technique. We utilized state-of-the-art HPE algorithms, OpenPose, AlphaPose, and HRNet, to generate diverse skeleton data samples from a single source video. Subsequently, we employed a residual graph convolutional network (ResGCN) to extract features from the generated skeleton data. In the FLF approach, the features extracted from ResGCN and applied to the skeleton data samples generated by multiple HPE algorithms are aggregated point-wise for gait recognition, while in the DLF approach, the decisions of ResGCN applied to each skeleton data sample are integrated using majority voting for the final recognition. Our proposed method demonstrated state-of-the-art skeleton-based cross-view gait recognition performance on a popular dataset, CASIA-B.