MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids
Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids
Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids
Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids
Journal Article

Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids

2019
Request Book From Autostore and Choose the Collection Method
Overview
Morus alba L. (Moraceae) has been used in traditional medicine for the treatment of several illnesses. Recent research also revealed several pharmacological activities from many groups of secondary metabolites, including the stilbenoids mulberroside A, oxyresveratrol, and resveratrol, which are promising compounds for cosmetic and herbal supplement products. In our previous study, cell cultures of M. alba showed high productivity of these compounds. In this study, we attempted to develop immobilized cell cultures of M. alba and to test the effect of elicitors and precursors on the production of stilbenoids. The immobilization of the M. alba cells significantly promoted the secretion of mulberroside A into the extracellular matrix and culture media to 60%, while enhancing the level of oxyresveratrol and resveratrol by 12- and 27-fold, respectively. The elicitation of immobilized cells with a combination of 50 µM methyl jasmonate and 0.5 mg/mL yeast extract for 24 h promoted a twofold increase in the production of all three stilbenoids. Furthermore, the addition of 0.05 mM l-phenylalanine, 0.03 mM l-tyrosine, or a combination resulted in the enhancement of mulberroside A production for up to twofold. The addition of l-tyrosine significantly enhanced the production of oxyresveratrol and resveratrol. This is the first report of stilbenoid production using immobilized cell cultures of M. alba. The cultures have benefits over normal cell suspension cultures by promoting the secretion of mulberroside A and enhancing the levels of oxyresveratrol and resveratrol. Thus, it could be a candidate method for the production of these stilbenoids.