MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization
Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization
Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization
Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization
Journal Article

Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization

2022
Request Book From Autostore and Choose the Collection Method
Overview
Molecular machines based on mechanically-interlocked molecules (MIMs) such as (pseudo) rotaxanes or catenates are known for their molecular-level dynamics, but promoting macro-mechanical response of these molecular machines or related materials is still challenging. Herein, by employing macrocyclic cucurbit[8]uril (CB[8])-based pseudorotaxane with a pair of styrene-derived photoactive guest molecules as linking structs of uranyl node, we describe a metal-organic rotaxane compound, U-CB[8]-MPyVB, that is capable of delivering controllable macroscopic mechanical responses. Under light irradiation, the ladder-shape structural unit of metal-organic rotaxane chain in U-CB[8]-MPyVB undergoes a regioselective solid-state [2 + 2] photodimerization, and facilitates a photo-triggered single-crystal-to-single-crystal (SCSC) transformation, which even induces macroscopic photomechanical bending of individual rod-like bulk crystals. The fabrication of rotaxane-based crystalline materials with both photoresponsive microscopic and macroscopic dynamic behaviors in solid state can be promising photoactuator devices, and will have implications in emerging fields such as optomechanical microdevices and smart microrobotics. The preparation of materials that display macro-mechanical responses to external stimuli is challenging. Here, the authors synthesize metal-organic rotaxane frameworks that contain photoactive axles as linkers; light irradiation triggers photodimerization of the ligands, which leads to macroscopic photomechanical bending of individual bulk crystals.