MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Temporal social network reconstruction using wireless proximity sensors: model selection and consequences
Temporal social network reconstruction using wireless proximity sensors: model selection and consequences
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Temporal social network reconstruction using wireless proximity sensors: model selection and consequences
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Temporal social network reconstruction using wireless proximity sensors: model selection and consequences
Temporal social network reconstruction using wireless proximity sensors: model selection and consequences

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Temporal social network reconstruction using wireless proximity sensors: model selection and consequences
Temporal social network reconstruction using wireless proximity sensors: model selection and consequences
Journal Article

Temporal social network reconstruction using wireless proximity sensors: model selection and consequences

2020
Request Book From Autostore and Choose the Collection Method
Overview
The emerging technologies of wearable wireless devices open entirely new ways to record various aspects of human social interactions in a broad range of settings. Such technologies allow to log the temporal dynamics of face-to-face interactions by detecting the physical proximity of participants. However, despite the wide usage of this technology and the collected datasets, precise reconstruction methods transforming the raw recorded communication data packets to social interactions are still missing. In this study we analyse a proximity dataset collected during a longitudinal social experiment aiming to understand the co-evolution of children’s language development and social network. Physical proximity and verbal communication of hundreds of pre-school children and their teachers are recorded over three years using autonomous wearable low power wireless devices. The dataset is accompanied with three annotated ground truth datasets, which record the time, distance, relative orientation, and interaction state of interacting children for validation purposes. We use this dataset to explore several pipelines of dynamical event reconstruction including earlier applied naïve approaches, methods based on Hidden Markov Model, or on Long Short-Term Memory models, some of them combined with supervised pre-classification of interaction packets. We find that while naïve models propose the worst reconstruction, Long Short-Term Memory models provide the most precise way to reconstruct real interactions up to ∼ 90 % accuracy. Finally, we simulate information spreading on the reconstructed networks obtained by the different methods. Results indicate that small improvement of network reconstruction accuracy may lead to significantly different spreading dynamics, while sometimes large differences in accuracy have no obvious effects on the dynamics. This not only demonstrates the importance of precise network reconstruction but also the careful choice of the reconstruction method in relation with the data collected. Missing this initial step in any study may seriously mislead conclusions made about the emerging properties of the observed network or any dynamical process simulated on it.