MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders
Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders
Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders
Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders
Journal Article

Leveraging two-dimensional pre-trained vision transformers for three-dimensional model generation via masked autoencoders

2025
Request Book From Autostore and Choose the Collection Method
Overview
Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision. Masking autoencoding is a promising self-supervised learning approach that greatly advances computer vision and natural language processing. For robust 2D representations, pre-training with large image data has become standard practice. On the other hand, the low availability of 3D datasets significantly impedes learning high-quality 3D features because of the high data processing cost. We present a strong multi-scale MAE prior training architecture that uses a trained ViT and a 3D representation model from 2D images to let 3D point clouds learn on their own. We employ the adept 2D information to direct a 3D masking-based autoencoder, which uses an encoder-decoder architecture to rebuild the masked point tokens through self-supervised pre-training. To acquire the input point cloud’s multi-view visual characteristics, we first use pre-trained 2D models. Next, we present a two-dimensional masking method that preserves the visibility of semantically significant point tokens. Numerous tests demonstrate how effectively our method works with pre-trained models and how well it generalizes to a range of downstream tasks. In particular, our pre-trained model achieved 93.63% accuracy for linear SVM on ScanObjectNN and 91.31% accuracy on ModelNet40. Our approach demonstrates how a straightforward architecture solely based on conventional transformers may outperform specialized transformer models from supervised learning.