MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption
A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption
A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption
A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption
Journal Article

A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and application in the voice encryption

2024
Request Book From Autostore and Choose the Collection Method
Overview
This paper describes a novel 4-D hyperchaotic system with a high level of complexity. It can produce chaotic, hyperchaotic, periodic, and quasi-periodic behaviors by adjusting its parameters. The study showed that the new system experienced the famous dynamical property of multistability. It can exhibit different coexisting attractors for the same parameter values. Furthermore, by using Lyapunov exponents, bifurcation diagram, equilibrium points’ stability, dissipativity, and phase plots, the study was able to investigate the dynamical features of the proposed system. The mathematical model’s feasibility is proved by applying the corresponding electronic circuit using Multisim software. The study also reveals an interesting and special feature of the system’s offset boosting control. Therefore, the new 4D system is very desirable to use in Chaos-based applications due to its hyperchaotic behavior, multistability, offset boosting property, and easily implementable electronic circuit. Then, the study presents a voice encryption scheme that employs the characteristics of the proposed hyperchaotic system to encrypt a voice signal. The new encryption system is implemented on MATLAB (R2023) to simulate the research findings. Numerous tests are used to measure the efficiency of the developed encryption system against attacks, such as histogram analysis, percent residual deviation (PRD), signal-to-noise ratio (SNR), correlation coefficient (cc), key sensitivity, and NIST randomness test. The simulation findings show how effective our proposed encryption system is and how resilient it is to different cryptographic assaults.